background image

875 

Federal Aviation Administration, DOT 

§ 171.313 

and Auxiliary Data C. Auxiliary Data 
A contents are specified below, Auxil-
iary Data B contents are reserved for 
future use, and Auxiliary Data C con-
tents are reserved for national use. The 
address codes of the auxiliary data 
words shall be as shown in Table 8b. 

(2) 

Organization and timing. 

The orga-

nization and timing of digital auxiliary 
data must be as specified in Table 7b. 
Data containing digital information 
must be transmitted with the least sig-
nificant bit first. Alphanumeric data 
characters must be encoded in accord-
ance with the 7-unit code character set 
as defined by the American National 
Standard Code for Information Inter-
change (ASCII). An even parity bit is 
added to each character. Alphanumeric 
data must be transmitted in the order 
in which they are to be read. The serial 
transmission of a character must be 
with the lower order bit transmitted 
first and the parity bit transmitted 
last. The timing for alphanumeric aux-
iliary data must be as shown in Table 
7c. 

(3) 

Auxiliary Data A content: 

The data 

items specified in Table 8c are defined 
as follows: 

(i) 

Approach azimuth antenna offset 

shall represent the minimum distance 
between the Approach Azimuth an-
tenna phase center and the vertical 
plane containing the runway center-
line. 

(ii) 

Approach azimuth to MLS datum 

point distance 

shall represent the min-

imum distance between the Approach 
Azimuth antenna phase center and the 
vertical plane perpendicular to the cen-
terline which contains the MLS datum 
point. 

(iii) 

Approach azimuth alignment with 

runway centerline 

shall represent the 

minimum angle between the approach 
azimuth antenna zero-degree guidance 
plane and the runway certerline. 

(iv) 

Approach azimuth antenna coordi-

nate system 

shall represent the coordi-

nate system (planar or conical) of the 
angle data transmitted by the ap-
proach azimuth antenna. 

(v) 

Approach elevation antenna offset 

shall represent the minimum distance 
between the elevation antenna phase 
center and the vertical plane con-
taining the runway centerline. 

(vi) 

MLS datum point to threshold dis-

tance 

shall represent the distance 

measured along the runway centerline 
from the MLS datum point to the run-
way threshold. 

(vii) 

Approach elevation antenna 

height 

shall represent the height of the 

elevation antenna phase center rel-
ative to the height of the MLS datum 
point. 

(viii) 

DME offset 

shall represent the 

minimum distance between the DME 
antenna phase center and the vertical 
plane containing the runway center-
line. 

(ix) 

DME to MLS datum point distance 

shall represent the minimum distance 
between the DME antenna phase center 
and the vertical plane perpendicular to 
the centerline which contains the MLS 
datum point. 

(x) 

Back azimuth antenna offset 

shall 

represent the minimum distance be-
tween the back azimuth antenna phase 
center and the vertical plane con-
taining the runway centerline. 

(xi) 

Back azimuth to MLS datum point 

distance 

shall represent the minimum 

distance between the Back Azimuth 
antenna and the vertical plane perpen-
dicular to the centerline which con-
tains the MLS datum point. 

(xii) 

Back azimuth antenna alignment 

with runway centerline 

shall represent 

the minimum angle between the back 
azimuth antenna zero-degree guidance 
plane and the runway centerline. 

§ 171.313 Azimuth performance re-

quirements. 

This section prescribes the perform-

ance requirements for the azimuth 
equipment of the MLS as follows: 

(a) 

Approach azimuth coverage require-

ments. 

The approach azimuth equip-

ment must provide guidance informa-
tion in at least the following volume of 
space (see Figure 9): 

T

ABLE

8b—A

UXILIARY

D

ATA

W

ORD

A

DDRESS

 

C

ODES

 

No. 

I

13

 

I

14

 

I

15

 

I

16

 

I

17

 

I

18

 

I

19

 

I

20

 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

background image

876 

14 CFR Ch. I (1–1–24 Edition) 

§ 171.313 

T

ABLE

8b—A

UXILIARY

D

ATA

W

ORD

A

DDRESS

 

C

ODES

—Continued 

No. 

I

13

 

I

14

 

I

15

 

I

16

 

I

17

 

I

18

 

I

19

 

I

20

 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

T

ABLE

8b—A

UXILIARY

D

ATA

W

ORD

A

DDRESS

 

C

ODES

—Continued 

No. 

I

13

 

I

14

 

I

15

 

I

16

 

I

17

 

I

18

 

I

19

 

I

20

 

41. 

42. 

43. 

44. 

45. 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

59. 

60. 

61. 

62. 

63. 

64. 

N

OTE

1: Parity bits I

19

and I

20

are chosen to 

satisfy the equations: 

I

13

+ I

14

+ I

15

+ I

16

+ I

17

+ I

18

+ I

19

= EVEN 

I

14

+ I

16

+ I

18

+ I

20

= EVEN 

T

ABLE

8

C

—A

UXILIARY

D

ATA

 

Word 

(See 

note 6) 

Data content 

Type 

of data 

Maximun 

time be-

tween trans-

missions 

(Seconds) 

Bits 

used 

Range of values 

Least 

sig-
nifi-

cant 

bit 

A1 ......

Preamble .....................................................

Digital 

1.0 

12  ......................................................

.........

Address ........................................................

...........

....................

8  ......................................................

.........

Approach azimuth antenna offset ...............

...........

....................

10 

¥

511 m to + 511 m (See note 3) 

1 m 

Approach azimuth to MLS datum point dis-

tance.

...........

....................

13  0 m to 8 191 m ............................

1 m 

Approach azimuth antenna alignment with 

runway centerline.

...........

....................

12 

¥

20.47

° 

to 20.47

° 

(See note 3) ..

0.01

° 

Approach azimuth antenna coordinate sys-

tem.

...........

....................

1  (See note 2) .................................

.........

Spare ...........................................................

...........

....................

13  ......................................................

.........

Parity ............................................................

...........

....................

7  (See note 1) .................................

.........

A2 ......

Preamble .....................................................

Digital 

1.0 

12  ......................................................

.........

Address ........................................................

...........

....................

8  ......................................................

.........

Approach elevation antenna offset ..............

...........

....................

10 

¥

511 m to + 511 m (See note 3) 

1 m 

MLS datum point to threshold distance ......

...........

....................

10  0 m to 1 023 m ............................

1 m 

Approach elevation antenna height .............

...........

....................

¥

6.3 m to + 6.3 m (See note 3)

0.1 

Spare ...........................................................

...........

....................

22  ......................................................

.........

Parity ............................................................

...........

....................

7  (See note 1) .................................

.........

A3 ......

Preamble .....................................................

Digital 

(See note 4) 

12  ......................................................

.........

Address ........................................................

...........

....................

8  ......................................................

.........

DME offset ...................................................

...........

....................

10 

¥

511 m to + 511 m ....................

1 m 

DME to MLS datum point distance .............

...........

....................

14 

¥

8 191 m to + 8 191 m (See 
note 3).

1 m 

Spare ...........................................................

...........

....................

25  ......................................................

.........

Parity ............................................................

...........

....................

7  (See note 1) .................................

.........

A4 ......

Preamble .....................................................

Digital 

(See note 5) 

12  ......................................................

.........

Address ........................................................

...........

....................

8  ......................................................

.........

Back azimuth antenna .................................

...........

....................

10 

¥

511 m to + 511 m (See note 3) 

1 m 

Back azimuth to MLS datum point distance 

...........

....................

11  0 m to 2 047 m ............................

1 m 

background image

877 

Federal Aviation Administration, DOT 

§ 171.313 

T

ABLE

8

C

—A

UXILIARY

D

ATA

—Continued 

Word 

(See 

note 6) 

Data content 

Type 

of data 

Maximun 

time be-

tween trans-

missions 

(Seconds) 

Bits 

used 

Range of values 

Least 

sig-
nifi-

cant 

bit 

Back azimuth antenna alignment with run-

way centerline.

...........

....................

12 

¥

20.47

° 

to 20.47

° 

(See note 3) ..

0.01

° 

Spare ...........................................................

...........

....................

16  ......................................................

.........

Parity ............................................................

...........

....................

7  (See note 1) .................................

.........

N

OTE

1: Parity bits I

70

to I

76

are chosen to 

satisfy the equations which follow: 

For BIT I

70

Even = (I

13

+ ... + I

18

) + I

20

+ I

22

+ I

24

+ I

25

 

+ I

28

+ I

29

+ I

31

+ I

32

+ I

33

+ I

35

+ I

36

+ I

38

+ I

41

 

+ I

44

+ I

45

+ I

46

+ I

50

+ (I

52

+ ... + I

55

) + I

58

I

60

+ I

64

+ I

65

+ I

70

 

For BIT I

71

Even = (I

14

+ ... + I

19

) + I

21

+ I

23

+ I

25

+ I

26

 

+ I

29

+ I

30

+ I

32

+ I

33

+ I

34

+ I

36

+ I

37

+ I

39

+ I

42

 

+ I

45

+ I

46

+ I

47

+ I

51

+ (I

53

+ ... + I

56

) + I

59

I

61

+ I

65

+ I

66

+ I

71

 

For BIT I

72

Even = (I

15

+ ... + I

20

) + I

22

+ I

24

+ I

26

+ I

27

 

+ I

30

+ I

31

+ I

33

+ I

34

+ I

35

+ I

37

+ I

38

+ I

40

+ I

43

 

+ I

46

+ I

47

+ I

48

+ I

52

+ (I

54

+ ... + I

57

) + I

60

I

62

+ I

66

+ I

67

+ I

72

 

For BIT I

73

Even = (I

16

+ ... + I

21

) + I

23

+ I

25

+ I

27

+ I

28

 

+ I

31

+ I

32

+ I

34

+ I

35

+ I

36

+ I

38

+ I

39

+ I

41

+ I

44

 

+ I

47

+ I

48

+ I

49

+ I

53

+ (I

55

+ ... + I

58

) + I

61

I

63

+ I

67

+ I

68

+ I

73

 

For BIT I

74

Even = (I

17

+ ... + I

22

) + I

24

+ I

26

+ I

28

+ I

29

 

+ I

32

+ I

33

+ I

35

+ I

36

+ I

37

+ I

39

+ I

40

+ I

42

+ I

45

 

+ I

48

+ I

49

+ I

50

+ I

54

+ (I

56

+ ... + I

59

) + I

62

I

64

+ I

68

+ I

69

+ I

74

 

For BIT I

75

Even = (I

13

+ ... + I

17

) + I

19

+ I

21

+ I

23

+ I

24

 

+ I

27

+ I

28

+ I

30

+ I

31

+ I

32

+ I

34

+ I

35

+ I

37

+ I

40

 

+ I

43

+ I

44

+ I

45

+ I

49

+ (I

51

+ ... + I

54

) + I

57

I

59

+ I

63

+ I

64

+ I

69

+ I

75

 

For BIT I

76

Even = I

13

+ I

14

+ ... + I

75

+ I

76

 

N

OTE

2: Code for I

56

is: 0 = conical; 1 = 

planar. 

N

OTE

3: The convention for the coding of 

negative numbers is as follows: 

¥ 

MSB is the 

sign bit; 0 = + ; 1 = 

¥

—Other bits represent the absolute value. 
The convention for the antenna location is 

as follows: As viewed from the MLS approach 
reference datum looking toward the datum 
point, a positive number shall represent a lo-
cation to the right of the runway centerline 
(lateral offset) or above the runway (vertical 
offset), or towards the stop end of the run-
way (longitudinal distance). 

The convention for the antenna alignment 

is as follows: As viewed from above, a posi-
tive number shall represent clockwise rota-
tion from the runway centerline to the re-
spective zero-degree guidance plane. 

N

OTE

4: Data Word A3 is transmitted at in-

tervals of 1.0 seconds or less throughout the 
approach Azimuth coverage sector, except 
when back Azimuth guidance is provided. 
Where back Azimuth is provided transmit at 
intervals of 1.33 seconds or less throughout 
the approach Azimuth sector and 4.0 seconds 
or less throughout the back Azimuth cov-
erage sector. 

N

OTE

5: When back Azimuth guidance is 

provided, transmit at intervals of 1.33 sec-
onds or less throughout the back Azimuth 
coverage sector and 4.0 seconds or less 
throughout the approach Azimuth coverage 
sector. 

N

OTE

6: The designation ‘‘A1’’ represents 

the function identification code for ‘‘Auxil-
iary Data A’’ and address code number 1. 

background image

878 

14 CFR Ch. I (1–1–24 Edition) 

§ 171.313 

(1) Horizontally within a sector plus 

or minus 40 degrees about the runway 
centerline originating at the datum 
point and extending in the direction of 
the approach to 20 nautical miles from 
the runway threshold. The minimum 
proportional guidance sector must be 
plus or minus 10 degrees about the run-

way centerline. Clearance signals must 
be used to provide the balance of the 
required coverage, where the propor-
tional sector is less than plus or minus 
40 degrees. When intervening obstacles 
prevent full coverage, the 

±

40

° 

guidance 

sector can be reduced as required. For 
systems providing 

±

60

° 

lateral guidance 

background image

879 

Federal Aviation Administration, DOT 

§ 171.313 

the coverage requirement is reduced to 
14 nm beyond 

±

40

°

(2) Vertically between: 
(i) A conical surface originating 2.5 

meters (8 feet) above the runway cen-
terline at threshold inclined at 0.9 de-
gree above the horizontal. 

(ii) A conical surface originating at 

the azimuth ground equipment antenna 
inclined at 15 degrees above the hori-
zontal to a height of 6,000 meters (20,000 
feet). 

(iii) Where intervening obstacles pen-

etrate the lower surface, coverage need 
be provided only to the minimum line 
of sight. 

(3) Runway region: 
(i) Proportional guidance hori-

zontally within a sector 45 meters (150 
feet) each side of the runway centerline 
beginning at the stop end and extend-
ing parallel with the runway centerline 
in the direction of the approach to join 

the approach region. This requirement 
does not apply to offset azimuth instal-
lations. 

(ii) Vertically between a horizontal 

surface which is 2.5 meters (8 feet) 
above the farthest point of runway cen-
terline which is in line of sight of the 
azimuth antenna, and in a conical sur-
face originating at the azimuth ground 
equipment antenna inclined at 20 de-
grees above the horizontal up to a 
height to 600 meters (2,000 feet). This 
requirement does not apply to offset 
azimuth installations. 

(4) Within the approach azimuth cov-

erage sector defined in paragraphs (a) 
(1), and (2) and (3) of this section, the 
power densities must not be less than 
those shown in Table 9 but the equip-
ment design must also allow for: 

(i) Transmitter power degradation 

from normal by 

¥

1.5 dB; 

T

ABLE

9—M

INIMUM

P

OWER

D

ENSITY

W

ITHIN

C

OVERAGE

B

OUNDARIES

(

D

BW/

M

2

Function 

Data 

signals 

Angle signals for various antenna 

beamwidths 

Clearance 

signals 

1

° 

1.5

° 

2

° 

3

° 

Approach azimuth .......................................................................

¥

89.5 

¥

88  ..........

¥

85.5 

¥

82 

¥

88 

High rate approach azimuth ........................................................

¥

89.5 

¥

88  ..........

¥

88 

¥

86.5 

¥

88 

Back azimuth ...............................................................................

¥

89.5 

¥

88  ..........

¥

85.5 

¥

82 

¥

88 

Approach elevation .....................................................................

¥

89.5 

¥

88 

¥

88 

¥

88  ..............

....................

(ii) Rain loss of 

¥

2.2 dB at the longi-

tudinal coverage extremes. 

(b) 

Siting requirements. 

The approach 

azimuth antenna system must, except 
as allowed in paragraph (c) of this sec-
tion: 

(1) Be located on the extension of the 

centerline of the runway beyond the 
stop end; 

(2) Be adjusted so that the zero de-

gree azimuth plane will be a vertical 
plane which contains the centerline of 
the runway served; 

(3) Have the minimum height nec-

essary to comply with the coverage re-
quirements prescribed in paragraph (a) 
of this section; 

(4) Be located at a distance from the 

stop end of the runway that is con-
sistent with safe obstruction clearance 
practices; 

(5) Not obscure any light of an ap-

proach lighting system; and 

(6) Be installed on frangible mounts 

or beyond the 300 meter (1,000 feet) 
light bar. 

(c) On runways where limited terrain 

prevents the azimuth antenna from 
being positioned on the runway center-
line extended, and the cost of the land 
fill or a tall tower antenna support is 
prohibitive, the azimuth antenna may 
be offset. 

(d) 

Antenna coordinates. 

The scanning 

beams transmitted by the approach 
azimuth equipment within 

±

40

° 

of the 

centerline may be either conical or 
planar. 

(e) 

Approach azimuth accuracy. 

(1) The 

system and subsystem errors shall not 
exceed those listed in Table 10 at the 
approach reference datum. 

At the approach reference datum, 

temporal sinusoidal noise components 
shall not exceed 0.025 degree peak in 
the frequency band 0.01 Hz to 1.6 Hz, 
and the CMN shall not exceed 0.10 de-
gree. From the approach reference 

background image

880 

14 CFR Ch. I (1–1–24 Edition) 

§ 171.313 

datum to the coverage limit, the PFE, 
PFN and CMN limits, expressed in an-
gular terms, shall be allowed to lin-
early increase as follows: 

(i) With distance along the runway 

centerline extended, by a factor of 1.2 
for the PFE and PFN limits and to 

±

0.10 degree for the CMN limits. 

(ii) With azimuth angle, by a factor 

of 1.5 at the 

±

40 degree and a factor of 

2.0 at the 

±

60 degree azimuth angles for 

the PFE, PFN and CMN limits. 

(iii) With elevation angle from + 9 de-

grees to + 15 degrees, by a factor of 1.5 
for the PFE and PFN limits. 

(iv) Maximum angular limits. The 

PFE limits shall not exceed 

±

0.25 de-

gree in any coverage region below an 
elevation angle of + 9 degrees nor ex-
ceed 

±

0.50 degree in any coverage re-

gion above that elevation angle. The 
CMN limits shall not exceed 

±

0.10 de-

gree in any coverage region within 

±

10 

degrees of runway centerline extended 
nor exceed 

±

0.20 degree in any other re-

gion within coverage. 

N

OTE

: It is desirable that the CMN not ex-

ceed 

±

0.10 degree throughout the coverage. 

(f) Approach azimuth antenna char-

acteristics are as follows: 

(1) 

Drift. 

Any azimuth angle as en-

coded by the scanning beam at any 
point within the proportional coverage 
must not vary more than 

±

0.07 degree 

over the range of service conditions 
specified in § 171.309(d) without the use 
of internal environmental controls. 
Multipath effects are excluded from 
this requirement. 

(2) 

Beam pointing errors. 

The azimuth 

angle as encoded by the scanning beam 
at any point within 

±

0.5 degree of the 

zero degree azimuth must not deviate 
from the true azimuth angle at that 
point by more than 

±

.05 degree. 

Multipath and drift effects are ex-
cluded from this requirement. 

T

ABLE

10—A

PPROACH

A

ZIMUTH

A

CCURACIES AT

 

THE

A

PPROACH

R

EFERENCE

D

ATUM

 

Error type 

System 

Angular error (degrees) 

Ground 

subsystem 

Airborne 

subsystem 

PFE ........

±

20 ft. (6.1m)

12

 

±

0.118

°

3

..

±

0.017

° 

CMN ......

±

10.5 ft. (3.2m)

124

 

±

0.030

°

....

±

0.050

° 

Notes: 

1

Includes errors due to ground and airborne equipment and 

propagation effects. 

2

The system PFN component must not exceed 

±

3.5 meters 

(11.5 feet). 

3

The mean (bias) error component contributed by the 

ground equipment should not exceed 

±

10 feet. 

4

The system control motion noise must not exceed 0.1 de-

gree. 

5

The airborne subsystem angular errors are provided for in-

formation only. 

(3) 

Antenna alignment. 

The antenna 

must be equipped with suitable optical, 
electrical or mechanical means or any 
combination of the three, to bring the 
zero degree azimuth radial into coinci-
dence with the approach reference 
datum (for centerline siting) with a 
maximum error of 0.02 degree. Addi-
tionally, the azimuth antenna bias ad-
justment must be electronically steer-
able at least to the monitor limits in 
steps not greater than 0.005 degree. 

(4) 

Antenna far field patterns in the 

plane of scan. 

On boresight, the azi-

muth antenna mainlobe pattern must 
conform to Figure 10, and the beam-
width must be such that, in the in-
stalled environment, no significant lat-
eral reflections of the mainlobe exist 
along the approach course. In any case 
the beamwidth must not exceed three 
degrees. Anywhere within coverage the 

¥

3 dB width of the antenna mainlobe, 

while scanning normally, must not be 
less than 25 microseconds (0.5 degree) 
or greater than 250 microseconds (5 de-
grees). The antenna mainlobe may be 
allowed to broaden from the value at 
boresight by a factor of 1/cos

q

, where 

is the angle off boresight. The sidelobe 
levels must be as follows: 

(i) 

Dynamic sidelobe levels. 

With the 

antenna scanning normally, the dy-
namic sidelobe level that is detected by 
a receiver at any point within the pro-
portional coverage sector must be 
down at least 10 dB from the peak of 
the main beam. Outside the coverage 
sector, the radiation from the scanning 
beam antenna must be of such a nature 
that receiver warning will not be re-
moved or suitable OCI signals must be 
provided. 

(ii) 

Effective sidelobe levels. 

With the 

antenna scanning normally, the 
sidelobe levels in the plane of scan 
must be such that, in the installed en-
vironment, the CMN contributed by 
sidelobe reflections will not exceed the 
angular equivalent of 9 feet at ap-
proach reference datum over the re-
quired range of aircraft approach 
speeds. 

background image

881 

Federal Aviation Administration, DOT 

§ 171.313 

(5) 

Antenna far field pattern in the 

vertical plane. 

The azimuth antenna 

free space radiation pattern below the 
horizon must have a slope of at least 

¥

8 dB/degree at the horizon and all 

sidelobes below the horizon must be at 
least 13 dB below the pattern peak. The 
antenna radiation pattern above the 
horizon must satisfy both the system 

coverage requirements and the spu-
rious radiation requirement. 

(6) 

Data antenna. 

The data antenna 

must have horizontal and vertical pat-
terns as required for its function. 

(g) 

Back azimuth coverage require-

ments. 

The back azimuth equipment 

where used must provide guidance in-
formation in at least the following vol-
ume of space (see Figure 11): 

background image

882 

14 CFR Ch. I (1–1–24 Edition) 

§ 171.313 

(1) Horizontally within a sector 

±

40 

degrees about the runway centerline 
originating at the back azimuth 
ground equipment antenna and extend-
ing in the direction of the missed ap-

proach at least to 20 nautical miles 
from the runway stop end. The min-
imum proportional guidance sector 
must be 

±

10 degrees about the runway 

centerline. Clearance signals must be 

background image

883 

Federal Aviation Administration, DOT 

§ 171.313 

used to provide the balance of the re-
quired coverage where the proportional 
sector is less than 

±

40 degrees. 

(2) Vertically in the runway region 

between: 

(i) A horizontal surface 2.5 meters (8 

feet) above the farthest point of run-
way centerline which is in line of sight 
of the azimuth antenna, and, 

(ii) A conical surface originating at 

the azimuth ground equipment antenna 
inclined at 20 degrees above the hori-
zontal up to a height of 600 meters (2000 
feet). 

(3) Vertically in the back azimuth re-

gion between: 

(i) A conical surface originating 2.5 

meters (8 feet) above the runway stop 
end, included at 0.9 degree above the 
horizontal, and, 

(ii) A conical surface orginating at 

the missed approach azimuth ground 
equipment antenna, inclined at 15 de-
grees above the horizontal up to a 
height of 1500 meters (5000 feet). 

(iii) Where obstacles penetrate the 

lower coverage limits, coverage need be 
provided only to minimum line of 
sight. 

(4) Within the back azimuth coverage 

sector defined in paragraph (q) (1), (2), 
and (3) of this section the power den-
sities must not be less than those 
shown in Table 9, but the equipment 
design must also allow for: 

(i) Transmitter power degradation 

from normal 

¥

1.5 dB. 

(ii) Rain loss of 

¥

2.2 dB at the longi-

tudinal coverage extremes. 

(h) 

Back azimuth siting. 

The back azi-

muth equipment antenna must: 

(1) Normally be located on the exten-

sion of the runway centerline at the 
threshold end; 

(2) Be adjusted so that the vertical 

plane containing the zero degree course 
line contains the back azimuth ref-
erence datum; 

(3) Have minimum height necessary 

to comply with the course require-
ments prescribed in paragraph (g) of 
this section; 

(4) Be located at a distance from the 

threshold end that is consistent with 
safe obstruction clearance practices; 

(5) Not obscure any light of an ap-

proach lighting system; and 

(6) Be installed on frangible mounts 

or beyond the 300 meter (1000 feet) light 
bar. 

(i) 

Back azimuth antenna coordinates. 

The scanning beams transmitted by 
the back azimuth equipment may be ei-
ther conical or planar. 

(j) 

Back azimuth accuracy. 

The re-

quirements specified in § 171.313(e) 
apply except that the reference point is 
the back azimuth reference datum. 

(k) 

Back azimuth antenna characteris-

tics. 

The requirements specified in 

§ 171.313(f) apply. 

(l) 

Scanning conventions. 

Figure 12 

shows the approach azimuth and back 
azimuth scanning conventions. 

background image

884 

14 CFR Ch. I (1–1–24 Edition) 

§ 171.313 

background image

885 

Federal Aviation Administration, DOT 

§ 171.315 

(m) 

False guidance. 

False courses 

which can be acquired and tracked by 
an aircraft shall not exist anywhere ei-
ther inside or outside of the MLS cov-
erage sector. False courses which exist 
outside of the minimum coverage sec-
tor may be suppressed by the use of 
OCI. 

N

OTE

: False courses may be due to (but not 

limited to) MLS airborne receiver acquisi-
tion of the following types of false guidance: 
reflections of the scanning beam, scanning 
beam antenna sidelobes and grating lobes, 
and incorrect clearance. 

§ 171.315 Azimuth monitor system re-

quirements. 

(a) The approach azimuth or back 

azimuth monitor system must cause 
the radiation to cease and a warning 
must be provided at the designated 
control point if any of the following 
conditions persist for longer than the 
periods specified: 

(1) There is a change in the ground 

equipment contribution to the mean 
course error component such that the 
path following error at the reference 
datum or in the direction of any azi-
muth radial, exceeds the limits speci-
fied in §§ 171.313(e)(1) or 171.313(j) for a 
period of more than one second. 

N

OTE

: The above requirement and the re-

quirement to limit the ground equipment 
mean error to 

±

10 ft. can be satisfied by the 

following procedure. The integral monitor 
alarm limit should be set to the angular 

equivalent of 

±

10 ft. at the approach ref-

erence datum. This will limit the electrical 
component of the mean course error to 

±

10 

ft. The field monitor alarm limit should be 
set such that with the mean course error at 
the alarm limit the total allowed PFE is not 
exceeded on any commissioned approach 
course from the limit of coverage to an alti-
tude of 100 feet. 

(2) There are errors in two consecu-

tive transmissions of Basic Data Words 
1, 2, 4 or 5. 

(3) There is a reduction in the radi-

ated power to a level not less than that 
specified in §§ 171.313(a)(4) or 
171.313(g)(4) for a period of more than 
one second. 

(4) There is an error in the preamble 

DPSK transmissions which occurs 
more than once in any one second pe-
riod. 

(5) There is an error in the time divi-

sion multiplex synchronization of a 
particular azimuth function that the 
requirement specified in § 171.311(e) is 
not satisfied and if this condition per-
sists for more than one second. 

(6) A failure of the monitor is de-

tected. 

(b) Radiation of the following 

fuctions must cease and a warning pro-
vided at the designated control point if 
there are errors in 2 consecutive trans-
missions: 

(1) Morse Code Identification, 
(2) Basic Data Words 3 and 6, 
(3) Auxiliary Data Words.