background image

237 

Federal Aviation Administration, DOT 

§ 25.337 

case, the margin may not be reduced to 
less than 0.05M. 

(c) 

Design maneuvering speed V

A

. For 

V

A

, the following apply: 

(1) V

A

may not be less than V

S1

where— 

(i) 

n  is the limit positive maneu-

vering load factor at 

V

C

; and 

(ii) 

V

S1

is the stalling speed with flaps 

retracted. 

(2) 

V

A

and 

V

S

must be evaluated at 

the design weight and altitude under 
consideration. 

(3) 

V

A

need not be more than 

V

C

or 

the speed at which the positive 

C

N max

 

curve intersects the positive maneuver 
load factor line, whichever is less. 

(d) 

Design speed for maximum gust in-

tensity, V

B

(1) V

B

may not be less than 

V

K U

V a

w

S

g

ref

c

1

1 2

1

498

+



where— 

V

S1

= the 1-g stalling speed based on C

NAmax

 

with the flaps retracted at the particular 
weight under consideration; 

V

c

= design cruise speed (knots equivalent 

airspeed); 

U

ref

= the reference gust velocity (feet per 

second equivalent airspeed) from 
§ 25.341(a)(5)(i); 

w = average wing loading (pounds per square 

foot) at the particular weight under con-
sideration. 

K

w

cag

g

=

+

=

.

.

88

5 3

2

μ

μ

μ

ρ

= density of air (slugs/ft

3

); 

c = mean geometric chord of the wing (feet); 
g = acceleration due to gravity (ft/sec

2

); 

a = slope of the airplane normal force coeffi-

cient curve, C

NA

per radian; 

(2) At altitudes where V

C

is limited 

by Mach number— 

(i) V

B

may be chosen to provide an 

optimum margin between low and high 
speed buffet boundaries; and, 

(ii) V

B

need not be greater than V

C

(e) 

Design flap speeds, V

F

. For 

V

F

, the 

following apply: 

(1) The design flap speed for each flap 

position (established in accordance 
with § 25.697(a)) must be sufficiently 

greater than the operating speed rec-
ommended for the corresponding stage 
of flight (including balked landings) to 
allow for probable variations in control 
of airspeed and for transition from one 
flap position to another. 

(2) If an automatic flap positioning or 

load limiting device is used, the speeds 
and corresponding flap positions pro-
grammed or allowed by the device may 
be used. 

(3) 

V

F

may not be less than— 

(i) 1.6 

V

S1

with the flaps in takeoff po-

sition at maximum takeoff weight; 

(ii) 1.8 

V

S1

with the flaps in approach 

position at maximum landing weight, 
and 

(iii) 1.8 

V

S0

with the flaps in landing 

position at maximum landing weight. 

(f) 

Design drag device speeds, V

DD

. The 

selected design speed for each drag de-
vice must be sufficiently greater than 
the speed recommended for the oper-
ation of the device to allow for prob-
able variations in speed control. For 
drag devices intended for use in high 
speed descents, 

V

DD

may not be less 

than 

V

D

. When an automatic drag de-

vice positioning or load limiting means 
is used, the speeds and corresponding 
drag device positions programmed or 
allowed by the automatic means must 
be used for design. 

[Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as 
amended by Amdt. 25–23, 35 FR 5672, Apr. 8, 
1970; Amdt. 25–86, 61 FR 5220, Feb. 9, 1996; 
Amdt. 25–91, 62 FR 40704, July 29, 1997] 

§ 25.337

Limit maneuvering load fac-

tors. 

(a) Except where limited by max-

imum (static) lift coefficients, the air-
plane is assumed to be subjected to 
symmetrical maneuvers resulting in 
the limit maneuvering load factors pre-
scribed in this section. Pitching veloci-
ties appropriate to the corresponding 
pull-up and steady turn maneuvers 
must be taken into account. 

(b) The positive limit maneuvering 

load factor 

n  for any speed up to Vn 

may not be less than 2.1 + 24,000/ (

W  

10,000) except that 

n  may not be less 

than 2.5 and need not be greater than 
3.8—where 

W  is the design maximum 

takeoff weight. 

(c) The negative limit maneuvering 

load factor— 

VerDate Sep<11>2014 

09:06 Jun 28, 2024

Jkt 262046

PO 00000

Frm 00247

Fmt 8010

Sfmt 8010

Y:\SGML\262046.XXX

262046

ER09fe96.016</MATH>

ER09FE96.017</MATH>

jspears on DSK121TN23PROD with CFR

background image

238 

14 CFR Ch. I (1–1–24 Edition) 

§ 25.341 

(1) May not be less than 

¥

1.0 at 

speeds up to 

V

C

; and 

(2) Must vary linearly with speed 

from the value at 

V

C

to zero at 

V

D

(d) Maneuvering load factors lower 

than those specified in this section 
may be used if the airplane has design 
features that make it impossible to ex-
ceed these values in flight. 

[Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as 
amended by Amdt. 25–23, 35 FR 5672, Apr. 8, 
1970] 

§ 25.341

Gust and turbulence loads. 

(a) 

Discrete Gust Design Criteria. The 

airplane is assumed to be subjected to 
symmetrical vertical and lateral gusts 
in level flight. Limit gust loads must 
be determined in accordance with the 
provisions: 

(1) Loads on each part of the struc-

ture must be determined by dynamic 
analysis. The analysis must take into 
account unsteady aerodynamic charac-
teristics and all significant structural 
degrees of freedom including rigid body 
motions. 

(2) The shape of the gust must be: 

U

U

ds

=


⎝⎜


⎠⎟



2

1- Cos

s

H

π

for 0 

2H 

where— 
s = distance penetrated into the gust (feet); 
U

ds

= the design gust velocity in equivalent 
airspeed specified in paragraph (a)(4) of 
this section; and 

H = the gust gradient which is the distance 

(feet) parallel to the airplane’s flight 
path for the gust to reach its peak veloc-
ity. 

(3) A sufficient number of gust gra-

dient distances in the range 30 feet to 
350 feet must be investigated to find 
the critical response for each load 
quantity. 

(4) The design gust velocity must be: 

U

U

F H

ds

ref g

=

(

)

350

1 6

where— 

U

ref

= the reference gust velocity in equiva-

lent airspeed defined in paragraph (a)(5) 
of this section. 

F

g

= the flight profile alleviation factor de-

fined in paragraph (a)(6) of this section. 

(5) The following reference gust ve-

locities apply: 

(i) At airplane speeds between V

B

and 

V

C

: Positive and negative gusts with 

reference gust velocities of 56.0 ft/sec 
EAS must be considered at sea level. 
The reference gust velocity may be re-
duced linearly from 56.0 ft/sec EAS at 
sea level to 44.0 ft/sec EAS at 15,000 
feet. The reference gust velocity may 
be further reduced linearly from 44.0 ft/ 
sec EAS at 15,000 feet to 20.86 ft/sec 
EAS at 60,000 feet. 

(ii) At the airplane design speed V

D

The reference gust velocity must be 0.5 
times the value obtained under 
§ 25.341(a)(5)(i). 

(6) The flight profile alleviation fac-

tor, F

g

, must be increased linearly from 

the sea level value to a value of 1.0 at 
the maximum operating altitude de-
fined in § 25.1527. At sea level, the flight 
profile alleviation factor is determined 
by the following equation: 

F

F

F

Where

F

Z

F

R Tan

R

R

Maximum Landing Weight

Maximum Take off Weight

R

Maximum Zero Fuel Weight

Maximum Take off Weight

g

gz

gm

gz

mo

gm

=

+

(

)

= −

=

=

=

0 5

1

250000

4

2

1

1

2

.

:

;

;

;

;

π

-

-

Z

mo

= Maximum operating altitude defined in 

§ 25.1527 (feet). 

(7) When a stability augmentation 

system is included in the analysis, the 
effect of any significant system non-
linearities should be accounted for 
when deriving limit loads from limit 
gust conditions. 

(b) 

Continuous turbulence design cri-

teria.  The dynamic response of the air-
plane to vertical and lateral contin-
uous turbulence must be taken into ac-
count. The dynamic analysis must take 
into account unsteady aerodynamic 
characteristics and all significant 
structural degrees of freedom including 

VerDate Sep<11>2014 

09:06 Jun 28, 2024

Jkt 262046

PO 00000

Frm 00248

Fmt 8010

Sfmt 8010

Y:\SGML\262046.XXX

262046

ER09FE96.018</MATH>

ER09FE96.019</MATH>

EN08MR96.004</MATH>

jspears on DSK121TN23PROD with CFR