background image

497 

Federal Aviation Administration, DOT 

§ 27.177 

§ 27.171

Stability: general. 

The rotorcraft must be able to be 

flown, without undue pilot fatigue or 
strain, in any normal maneuver for a 
period of time as long as that expected 
in normal operation. At least three 
landings and takeoffs must be made 
during this demonstration. 

§ 27.173

Static longitudinal stability. 

(a) The longitudinal control must be 

designed so that a rearward movement 
of the control is necessary to obtain an 
airspeed less than the trim speed, and a 
forward movement of the control is 
necessary to obtain an airspeed more 
than the trim speed. 

(b) Throughout the full range of alti-

tude for which certification is re-
quested, with the throttle and collec-
tive pitch held constant during the ma-
neuvers specified in § 27.175(a) through 
(d), the slope of the control position 
versus airspeed curve must be positive. 
However, in limited flight conditions 
or modes of operation determined by 
the Administrator to be acceptable, the 
slope of the control position versus air-
speed curve may be neutral or negative 
if the rotorcraft possesses flight char-
acteristics that allow the pilot to 
maintain airspeed within 

±

5 knots of 

the desired trim airspeed without ex-
ceptional piloting skill or alertness. 

[Amdt. 27–21, 49 FR 44433, Nov. 6, 1984, as 
amended by Amdt. 27–44, 73 FR 10999, Feb. 29, 
2008] 

§ 27.175

Demonstration of static longi-

tudinal stability. 

(a) 

Climb.  Static longitudinal sta-

bility must be shown in the climb con-
dition at speeds from Vy 

¥ 

10 kt to Vy 

+ 10 kt with— 

(1) Critical weight; 
(2) Critical center of gravity; 
(3) Maximum continuous power; 
(4) The landing gear retracted; and 
(5) The rotorcraft trimmed at 

V

Y.

 

(b) 

Cruise.  Static longitudinal sta-

bility must be shown in the cruise con-
dition at speeds from 0.8 V

NE

¥ 

10 kt to 

0.8 V

NE

+ 10 kt or, if V

H

is less than 0.8 

V

NE

, from V

H

¥

10 kt to V

H

+ 10 kt, 

with— 

(1) Critical weight; 
(2) Critical center of gravity; 
(3) Power for level flight at 0.8 V

NE

or 

V

H

, whichever is less; 

(4) The landing gear retracted; and 
(5) The rotorcraft trimmed at 0.8 V

NE

 

or V

H

, whichever is less. 

(c) 

V

NE.

Static longitudinal stability 

must be shown at speeds from V

NE

¥ 

20 

kt to V

NE

with— 

(1) Critical weight; 
(2) Critical center of gravity; 
(3) Power required for level flight at 

V

NE

¥

10 kt or maximum continuous 

power, whichever is less; 

(4) The landing gear retracted; and 
(5) The rotorcraft trimmed at V

NE

¥ 

10 kt. 

(d) 

Autorotation.  Static longitudinal 

stability must be shown in autorota-
tion at— 

(1) Airspeeds from the minimum rate 

of descent airspeed

¥

10 kt to the min-

imum rate of descent airspeed + 10 kt, 
with— 

(i) Critical weight; 
(ii) Critical center of gravity; 
(iii) The landing gear extended; and 
(iv) The rotorcraft trimmed at the 

minimum rate of descent airspeed. 

(2) Airspeeds from best angle-of-glide 

airspeed

¥

10 kt to the best angle-of- 

glide airspeed + 10 kt, with— 

(i) Critical weight; 
(ii) Critical center of gravity; 
(iii) The landing gear retracted; and 
(iv) The rotorcraft trimmed at the 

best angle-of-glide airspeed. 

(Secs. 313(a), 601, 603, 604, and 605 of the Fed-
eral Aviation Act of 1958 (49 U.S.C. 1354(a), 
1421, 1423, 1424, and 1425); and sec. 6(c) of the 
Dept. of Transportation Act (49 U.S.C. 
1655(c))) 

[Doc. No. 5074, 29 FR 15695, Nov. 24, 1964, as 
amended by Amdt. 27–2, 33 FR 963, Jan. 26, 
1968; Amdt. 27–11, 41 FR 55468, Dec. 20, 1976; 
Amdt. 27–14, 43 FR 2325, Jan. 16, 1978; Amdt. 
27–21, 49 FR 44433, Nov. 6, 1984; Amdt. 27–34, 62 
FR 46173, Aug. 29, 1997; Amdt. 27–44, 73 FR 
10999, Feb. 29, 2008] 

§ 27.177

Static directional stability. 

(a) The directional controls must op-

erate in such a manner that the sense 
and direction of motion of the rotor-
craft following control displacement 
are in the direction of the pedal motion 
with the throttle and collective con-
trols held constant at the trim condi-
tions specified in § 27.175(a), (b), and (c). 
Sideslip angles must increase with 
steadily increasing directional control 
deflection for sideslip angles up to the 
lesser of— 

VerDate Sep<11>2014 

09:06 Jun 28, 2024

Jkt 262046

PO 00000

Frm 00507

Fmt 8010

Sfmt 8010

Y:\SGML\262046.XXX

262046

jspears on DSK121TN23PROD with CFR

background image

498 

14 CFR Ch. I (1–1–24 Edition) 

§ 27.231 

(1) 

±

25 degrees from trim at a speed of 

15 knots less than the speed for min-
imum rate of descent varying linearly 
to 

±

10 degrees from trim at V

NE

(2) The steady state sideslip angles 

established by § 27.351; 

(3) A sideslip angle selected by the 

applicant, which corresponds to a 
sideforce of at least 0.1g; or 

(4) The sideslip angle attained by 

maximum directional control input. 

(b) Sufficient cues must accompany 

the sideslip to alert the pilot when the 
aircraft is approaching the sideslip 
limits. 

(c) During the maneuver specified in 

paragraph (a) of this section, the side-
slip angle versus directional control 
position curve may have a negative 
slope within a small range of angles 
around trim, provided the desired head-
ing can be maintained without excep-
tional piloting skill or alertness. 

[Amdt. 27–44, 73 FR 11000, Feb. 29, 2008] 

G

ROUND AND

W

ATER

H

ANDLING

 

C

HARACTERISTICS

 

§ 27.231

General. 

The rotorcraft must have satisfac-

tory ground and water handling char-
acteristics, including freedom from un-
controllable tendencies in any condi-
tion expected in operation. 

§ 27.235

Taxiing condition. 

The rotorcraft must be designed to 

withstand the loads that would occur 
when the rotorcraft is taxied over the 
roughest ground that may reasonably 
be expected in normal operation. 

§ 27.239

Spray characteristics. 

If certification for water operation is 

requested, no spray characteristics 
during taxiing, takeoff, or landing may 
obscure the vision of the pilot or dam-
age the rotors, propellers, or other 
parts of the rotorcraft. 

§ 27.241

Ground resonance. 

The rotorcraft may have no dan-

gerous tendency to oscillate on the 
ground with the rotor turning. 

M

ISCELLANEOUS

F

LIGHT

R

EQUIREMENTS

 

§ 27.251

Vibration. 

Each part of the rotorcraft must be 

free from excessive vibration under 
each appropriate speed and power con-
dition. 

Subpart C—Strength Requirements 

G

ENERAL

 

§ 27.301

Loads. 

(a) Strength requirements are speci-

fied in terms of limit loads (the max-
imum loads to be expected in service) 
and ultimate loads (limit loads multi-
plied by prescribed factors of safety). 
Unless otherwise provided, prescribed 
loads are limit loads. 

(b) Unless otherwise provided, the 

specified air, ground, and water loads 
must be placed in equilibrium with in-
ertia forces, considering each item of 
mass in the rotorcraft. These loads 
must be distributed to closely approxi-
mate or conservatively represent ac-
tual conditions. 

(c) If deflections under load would 

significantly change the distribution of 
external or internal loads, this redis-
tribution must be taken into account. 

§ 27.303

Factor of safety. 

Unless otherwise provided, a factor of 

safety of 1.5 must be used. This factor 
applies to external and inertia loads 
unless its application to the resulting 
internal stresses is more conservative. 

§ 27.305

Strength and deformation. 

(a) The structure must be able to 

support limit loads without detri-
mental or permanent deformation. At 
any load up to limit loads, the defor-
mation may not interfere with safe op-
eration. 

(b) The structure must be able to 

support ultimate loads without failure. 
This must be shown by— 

(1) Applying ultimate loads to the 

structure in a static test for at least 
three seconds; or 

(2) Dynamic tests simulating actual 

load application. 

VerDate Sep<11>2014 

09:06 Jun 28, 2024

Jkt 262046

PO 00000

Frm 00508

Fmt 8010

Sfmt 8010

Y:\SGML\262046.XXX

262046

jspears on DSK121TN23PROD with CFR